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The chiral magnetic effect

The Chiral magnetic effect is argued to take place when matter with net
chirality is put in a background magnetic field, (Fukushima-Kharzeev
-McLerran-Warringa).

Right-handed particles move along the direction of their spin and
left-handed particles in opposite direction than their spin. In case of
strong magnetic field the spins of positively charged particles align in the
direction of the field. The spin of negative charged particles is opposite.

Therefore, net chirality creates an electric current parallel to the
magnetic field.
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The chiral magnetic effect

Figure : The red and blue arrows denote the momentum and spin, respectively. When
a strong magnetic field, ~B, is exerted in a medium of charges the positive charges align
towards ~B and the negative opposite to ~B. Moreover, right-handed particles move in
the same direction with their spin and left-handed in the opposite, (1). When, the
medium has net chirality, (2), separation of charges takes place, (3),
(Kharzeev-McLerran-Warringa).
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Chern-Simons number, NCS, characterizes vacua of SU(Nc) YM which
cannot be connected with continuous gauge transformations

NCS ≡
1

8π2

∫
d3x εijk Tr

[
Ai∂jAk −

2ig
3

AiAjAk

]
, (1)

where i, j, k = 1, 2, 3.

The change in NCS is
∆NCS =

∫
d4x q(xµ) , q(xµ) ≡

1
16π2

Tr [F ∧ F ] =
1

32π2
εµνρσTrFµνFρσ .

(2)

Configurations with non-zero ∆NCS lead to axial anomalies. Consider Nf

massless fermions coupled to the YM. Then, the theory enjoys
U(Nf )L × U(Nf )R global symmetry. The isospin singlet axial current is

jµ5 =

Nf∑
i=1

ψiγ
µγ5ψi (3)
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This current is not conserved due to a quantum anomaly

∂µjµ5 = − Nf

16π2 ε
µνρσTrFµνFρσ . (4)

Taking the expectation value of the above equation in some state and
integrating over spacetime

∆N5 = NL − NR |t=∞ − ( NL − NR |t=−∞) = 2Nf ∆NCS . (5)

Thus, changes in NCS corresponds to a change in chirality of the
medium.

Consider now the transition amplitude, A, from a state |ψ1(t1)〉 to |ψ2(t2)〉
times the change in axial number

A ∆N5 = 2
∫

d4x〈ψ2|q(x)|ψ1〉 (6)
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Taking the square of the above equation, summing over all possible
|ψ2(t2)〉 and using the completeness relation I =

∑
|ψ2〉〈ψ2|

〈(∆N5)2〉 = 4
∫

d4xd4y〈ψ1|q(x)q(y)|ψ1〉 (7)

The Chern-Simon diffusion rate, ΓCS, is the rate of change of NCS per unit
volume and is given by the Wightman two-point function of q(xµ),

ΓCS ≡
〈(∆NCS)2〉

Vt
=

∫
d4x 〈q(xµ)q(0)〉W . (8)
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In equilibrium states with finite temperature, ΓCS is given by

ΓCS = − lim
ω→0

2T
ω

Im GR(ω,~k = 0) , (9)

where GR(ω,~k) is the Fourier tranformation of the retarted Green
function of q(xµ).

The contribution of single instanton backgrounds to ΓCS is exponentially
suppressed.

ΓCS can be generated by thermal fluctuations in finite temperature states.
Those excite shaleron configurations which produce non-zero ΓCS upon
decay.

ΓCS is zero in perturbation theory since q(x) is a total derivative.

Finite ΓCS in QCD signals the creation of net chirality bubbles (domains
of more left-handed than right-handed quarks or the opposite) because
of the anomaly of the axial current.

When those bubbles are in a background magnetic field, the chiral
magnetic effect is created.
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Improved Holographic QCD (IHQCD)

Fields & the dual operators

Can we use gauge/gravity duality to calculate ΓCS?

IHQCD is an effective holographic model for 4d pure Yang-Mills. It’s
construction uses intuition from string theory and input from QCD
(Gursoy-Kiritsis-Nitti).

The bulk fields and their dual operators are

Bulk Fields Dual Operator

Metric gµν Tr
[
FµρFρν −

δµν
4 F 2

]
Dilaton φ Tr

[
F 2]

Axion α Tr [F ∧ F ]
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Improved Holographic QCD (IHQCD)

The action

The action of IHQCD is

S = M3
p N2

c

∫
d5x

√
−g
[
R − 4

3
(∂λ)2

λ2 + V (λ)− Z (λ)

2N2
c

(∂α)2
]
, (10)

where M3
p = 1/(16πG5N2

c ).

λ = eφ is the holographic ’t Hooft coupling with potential V (λ).

α(r) is the holographic θ angle.

Z (λ) encodes the interaction of the dilaton with the axion and it comes
from α′ corrections.

Requiring IHQCD free energy to follow Stefan-Boltzmann law for a gluon
gas at high T , we fix (Mp`)

−3 = 45π2.
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IHQCD

The vacuum

The zero temperature vacuum solution is of the type

ds2 = e2A0(r)(dr 2 + ηµνdxµdxν) , λ = λ(r) , (11)

where eA0(r) is the metric scale factor corresponding to the energy scale
of QCD.

As r → 0 (boundary of spacetime),

eA0(r) → `

r
+O

(
1

log(r)

)
, λ→ − 1

log r
, (12)

so as to match the running of the large-Nc YM coupling.

The axion field contribution to the vacuum energy is of order O
(
1/N2

c
)
.
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IHQCD

Finite Temperature

IHQCD action has black hole solutions which they describe finite temperature
QCD

ds2 = e2A(r)

(
dr2

f (r)
− f (r)dt2 + dx i dxi

)
(13)

Two branches of black hole solutions exist,

Big black holes Small black Holes

0 rmin

rh

Tmin

T

The large black holes are the thermodynamically preferred solutions. A first order
confinement/deconfinement phase transition happens.
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IHQCD

The dilaton potential

The running of ’t Hooft coupling in YM fixes the UV asymptotics of V (λ)

V (λ) ' 12
`2

(
1 + v0λ+ v1λ

2 +O(λ3)
)
. (14)

The criteria for confinement and asymptotic linear Regge trajectories of
the glueball spectra fix the IR behavior of V (λ)

V (λ) ∝ λ
4
3
√

log λ . (15)
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The action

The axion part of the action in IHQCD is reminded

Sα = −1
2

M3
p

∫
d5x

√
−g Z (λ)(∂α)2 . (16)

α(x , r) is dual to q(x). α(r = 0) = κ θ, where κ is a constant and θ is the
YM θ-angle.

The asymptotics of Z (λ) are

Z (λ) ∝

{
Z0 +O(λ), λ→ 0,
λ4 +O(1/λ), λ→∞,

. (17)

It’s IR asymptotics is decided by requiring universal linear glueball
Regge trajectories for large excitation number.
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The axion background

The axion equation of motion in a background of the from, (11), is

∂r

(
Z (λ(r)) e3A0 ∂rα(r)

)
= 0 . (18)

The solution reads

α(r) = θ + 2πk + C
∫ r

0

dr
`

1
e3A0 Z (λ)

, k ∈ Z . (19)

The on-shell action is the vacuum energy per volume

E(θ) = −
M3

p

2`
C α(r)

∣∣∣∣∣
r=∞

r=0

. (20)

Requiring to have contribution only from the UV boundary we find

C = 〈q(x)〉 = (θ + 2kπ)
(∫∞

0
dr
`

1
e3A0 Z (λ)

)−1
.
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Hence, the vacuum energy reads

E(θ) =
M3

p

2
(θ + 2kπ)2∫∞
0 dr 1

e3A0 Z (λ)

. (21)

and the topological susceptibility is

χ ≡ d2E(θ)

dθ2 =
M3

p∫∞
0

dr
e3A0(r)Z (λ(r))

. (22)



The chiral magnetic effect The Chern-Simons diffusion rate (ΓCS ) in SU(Nc ) YM IHQCD The holographic ΓCS The axion spectral function Conclusions and future directions Appendices

The interaction with dilaton (Z (λ))

The simplest form for Z (λ), which was first considered in IHQCD, is

Z (λ) = Z0(1 + c4λ
4) , (23)

Z0 is fixed by matching to the large-N YM lattice results for the
topological susceptibility,

χ ' (191MeV)4 ⇒ κ2Z0 = 33.25 (24)

(Vicari-Panagopoulos)
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The interaction with dilaton (Z (λ))

c4 is fixed by matching to lattice results for the first axial glueball mass.

m0−+/m0++ = 1.50⇒ c4 = 0.26 . (25)

The next mass of the 0−+ tower is very well predicted

(m0?−+/m0++ )IHQCD = 2.10 , (m0?−+/m0++ )lat. = 2.11(6) . (26)

(Morningstar-Peardon)
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The fluctuation equation

The linear fluctuation equation of the axion is considered in the black
hole background,

1
Z (λ(r))

√
−g

∂r

[
Z (λ(r))

√
−g grr∂rδα(r , kµ)

]
− gµνkµkν δα(r , kµ) = 0 ,

(27)
where we have considered solutions of the form

δα(r , xµ) =

∫
d4k

(2π)4
eikx δα(r , kµ) a(kµ) . (28)

The UV normalization is limr→0 δα(r , kµ) = 1, and infalling wave boundary
condition is set on the horizon.
The on shell action of the fluctuation is

Son-shell
α =

∫
d4k

(2π)4
a(−kµ)F(r , kµ) a(kµ)

∣∣∣∣∣
rh

0

,

F(r , kµ) ≡ −
M3

p

2
δα(r ,−kµ) Z (λ(r))

√
−g grr ∂r δα(r , kµ) .

(29)
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ΓCS

AdS/CFT yields that the retarded Green’s function is

ĜR(ω,~k) = −2 lim
r→0
F(r , kµ). (30)

Solving the fluctuation equation for ω = 0 and ~k = 0 we find

δα = C1 + C2

∫ r

0

dr ′

Z (λ(r ′))e3A(r ′)f (r ′)
, (31)

UV normalization fixes C1 = 1. For non-zero but small ω, we expect C2 ∝ ω.
Expanding (31) close to the horizon we have

δα = 1 +
C2

Z (λh) e3A(rh) f ′(rh)
log(rh − r) +O(rh − r) . (32)
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ΓCS

Then, we find

lim
r→0
F(r , kµ) = −

M3
p

2
C1 C2. (ω << T , ~k = 0) . (33)

Going back and solving the fluctuation equation at r → rh for finite ω and
setting the outgoing solution to zero, we have

δα = C+(rh−r)
iω

4πT +C−(rh−r)−
iω

4πT = C−− i
ω

4πT
C− log(rh−r)+O(ω2/T 2) .

(34)
Matching the two solutions, we find that in the limit ω → 0, C− = 1 and

C2 = −iω Z (λh) e3A(rh). We finally have

ΓCS

sT/N2
c

=
κ2Z (λh)

2π
, (35)

which implicitly depends on T , through Z (λh)
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Holographic ΓCS

On the large black hole branch, ΓCS/(sT/N2
c ) is bounded from below by

its value in the T →∞ limit, limT→∞
ΓCS

sT/N2
c

= κ2Z0
2π .

1 2 3 4 5 6
T!Tc

0.99990

0.99995

1.00000

1.00005

1.00010

1.00015

1.00020

!CS"#Κ2 Z0!2 Π$

#s T"Nc
2$

Figure : The numerical result for ΓCS/(sT/N2
c ) in terms of T/Tc for the simplest

Z (λ), (23). ΓCS/(sT/N2
c ) is approximately constant except for the region close to

Tc where it slightly increases.

Due to the small values of λh in the large black hole branch, terms with
lower power than λ4 in Z (λ) play an important role in ΓCS .
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Different parameterization of Z (λ)

The largest polynomial correction to Z (λ) for small values of λ is linear,

Z (λ) = Z0

(
1 + c1λ+ c4λ

4
)
. (36)

Upon fitting to the first axial glueball mass we find that for any c1 > 0
there is a c4 for which the value of the second excited state exhibits at
most 3% discrepancy from the large Nc lattice value.

Simple non-monotonic Z (λ)s with the desired asymptotics, (17),
produce glueball masses that deviate from lattice results more than 10%.

The assumption that Z (λ) is monotonic in λ sets the bound Z (λ) > Z0

for any temperature T .
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Different parameterization of Z (λ)

Figure : IHQCD masses of the 0−+ glueball states with excitation number n,
normalized to the 0++ mass for various (c1, c4). From the top (red) dots to the bottom
(blue) dots the values of (c1, c4) increase, (c1, c4) = (0, 0.26), (0.5, 0.87), (1, 2.2), (5, 24), (10, 75),

(20, 230), (40, 600). The two horizontal blue lines with surrounding blue bands indicate the
results and errors, respectively, of the large-Nc YM lattice masses of the lowest and
first excited states, n = 1 and n = 2, (Morningstar-Peardon).
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ΓCS
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Figure : (a) The numerical result for (ΓCS/κ
2Z0/2π)/(sT/N2

c ), as functions of T/Tc ,
for the Z (λ) in eq. (36), for increasing values of the parameters (c1, c4), from the
bottom (red) curve to the top (blue) curve,
(c1, c4) = (0, 0.26), (0.5, 0.87), (1, 2.2), (5, 24), (10, 75), (20, 230), (40, 600). (b) Close-up of the curves for
(from bottom to top) (c1, c4) = (0, 0.26), (0.5, 0.87), (1, 2.2). In all of these cases, as T
approaches Tc from above ΓCS/(sT/N2

c ) increases by anywhere from 0.01% up to a
factor greater than six. The increase occurs mostly between 2Tc and Tc .
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ΓCS

A numerical estimate of ΓCS near the confinement-deconfinement phase
transition is

ΓCS(Tc)/T 4
c = 0.31× κ2Z (λc)

2π
> 0.31× κ2Z0

2π
= 1.64 , (37)

where we have used the lattice result for the entropy density,
s(Tc) = 0.31N2

c T 3
c , (Lucini-Teper-Wenger).

An upper bound can also be set to ΓCS(Tc) by considering a Z (λ) of the
form of (36), with c1 = 5 and c4 = 50, which produce the axial glueball
spectrum within one sigma with respect to the lattice results. Then,

1.64 ≤ ΓCS(Tc)/T 4
c ≤ 2.8 . (38)
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ΓCS in N = 4 sYM.

The result in large-Nc strongly coupled N = 4 sYM is

ΓN=4
CS =

λ2
t

28π3 T 4 . (39)

(Son-Starinets).

For some typical values λt = 6π and N = 3 we have

ΓN=4
CS /T 4 ' 0.045 , (40)

which much smaller than the IHQCD result.

A naive extrapolation of the perturbative result, which is valid for
αs << 1, (− lnαs)−1 << 1, to αs = 0.5,

Γ
(per.)
CS (Tc)/T 4

c = 30α5
s ' 1 (41)

(Moore-Tassler)
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Im GR(ω,~k = 0)

We now calculate the axion spectral function (ImGR(ω,~k))for non-zero ω
and |~k |. We firstly calculate it for ~k = 0.

For small ω, the axion fluctuation equation yields Im GR(ω,~k = 0) ∝ ω.

For large ω, we expect Im GR(ω,~k = 0) ∝ ω4 because the theory is
conformally invariant in the UV and q(xµ) is dimension four.
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Im GR(ω,~k = 0)
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Ω
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0.5
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Tc Mp
3

Figure : Im GR(ω,~k = 0)/(TcM3
p ) as a function of ω/Tc , at Tc , for the Z (λ) in eq. (23).

The red dots are our numerical results that match the solid blue curve,
(1.6× 10−7)× (ω/Tc)4.051, which is the expected large ω behavior of the spectral
function.
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The renormalized Im GR(ω,~k = 0)

The ω4 scaling of Im GR(ω,~k = 0) at large ω is a divergence in the
coincidence limit of the two-point function, which may overwhelm peaks
in Im GR(ω,~k), rendering them practically invisible.

To eliminate the large-ω divergence we compute GR(ω,~k) at two
different temperatures, T1 and T2, and then take the difference,

∆GR(ω,~k ; T1,T2) ≡ GR(ω,~k)
∣∣∣
T2

− GR(ω,~k)
∣∣∣
T1

. (42)
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The renormalized Im GR(ω,~k = 0)
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-0.0010

-0.0005

0.0005

DHIm GRL

Tc Mp
3

Figure : The difference ∆Im GR(ω,~k = 0; Tc , 2Tc)/(TcM3
p ) as a function of ω/Tc , for

the Z (λ) in eq. (23). The difference goes to zero as ω/Tc →∞. The prominent
minimum at ω/Tc ≈ 10 and maximum at ω/Tc ≈ 22 indicate a shift in spectral weight
with increasing T , possibly from the motion of a peak in the spectral function. There is
a peak at ω ' 20Tc ' 1600MeV and width ∼ 10Tc ∼ 1300MeV.
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The renormalized Im GR(ω,~k)
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Figure : ∆Im GR(ω,~k = 0; Tc , 2Tc)/(TcM3
p ) in terms of ω/Tc and |~k |/Tc , for the Z (λ)

in eq. (23). As |~k | increases up to |~k |/Tc ≈ 10, the largest peak shifts from ω/Tc ≈ 22
up to ω/Tc ≈ 30. The width of the peak changes very little.
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Conclusions

The Chern-Simons diffusion rate was calculated in IHQCD for T > Tc

and found it proportional to Z (λh), which is the value of the axion-dilaton
potential, at λ = λh. λh is the value of the dilaton at the black hole
horizon.

Assuming that Z (λ) is a monotonic function of λ, we argued that it is
bounded from below by it’s value at T →∞.

This is argued to be true for a general class of (3+1)-dimensional,
confining, strongly-coupled, large-Nc theories with holographic duals.

A large value of ΓCS(Tc)/T 4
c , compared to the N = 4 sYM and the

extrapolated pertrubative results, is favored in IHQCD.

The presence of a long lived excitation of mass of order of the lightest
0−+ glueball at T = 0 was found by studying the axion spectral function.
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Future directions

Fixing Z (λ) by the fitting to a lattice calculation of the Euclidean 2-point
function of q(xµ) is an important future plan.

Calculate ΓCS in the presence of a background magnetic field.

Calculate ΓCS in a model which incorporates the flavor degrees of
freedom as well (V-QCD). Then, the axion is coupled to the axial vector
flavor current and the pseudoscalar phase of the tachyon. Hence, ΓCS is
expected to be affected by tachyon dynamics.
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Thank you
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The axion profile

Typical behavior of the axion in a confining background solution (T ≤ Tc)
with IR normalizable boundary conditions. The axion is interpreted as
the running θ-angle of the dual field theory.

In the deconfined background (T > Tc), the only non-singular solution is
α(r) = θ = const. and the topological susceptibility is zero.
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ΓCS

In equilibrium states with finite temperature, ΓCS is given by

ΓCS = − lim
ω→0

2T
ω

Im GR(ω,~k = 0) , (43)

where GR(ω,~k) is the Fourier tranformation of the retarted Green
function of q(xµ).

ΓCS can be related to ∆N5 by a fluctuation-dissipation relation of the form

d∆N5

dt
= −∆N5

6Nf

Nc

ΓCS

T 4 . (44)

Hence non-vanishing ∆N5 induces topological fluctuations which
balance ∆N5 and relax it back to zero.
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